#! https://zhuanlan.zhihu.com/p/521035797 TEST
[TOC]
Markdown Cheatsheet
Heading 1
Markup : # Heading 1 #
-OR-
Markup : ============= (below H1 text)
Heading 2
Markup : ## Heading 2 ##
-OR-
Markup: --------------- (below H2 text)
Heading 3
Markup : ### Heading 3 ###
Heading 4
Markup : #### Heading 4 ####
Common text
Markup : Common text
Emphasized text
Markup : _Emphasized text_ or *Emphasized text*
Strikethrough text
Markup : ~~Strikethrough text~~
Strong text
Markup : __Strong text__ or **Strong text**
Strong emphasized text
Markup : ___Strong emphasized text___ or ***Strong emphasized text***
Named Link and http://www.google.fr/ or http://example.com/
Markup : [Named Link](http://www.google.fr/ "Named link title") and http://www.google.fr/ or <http://example.com/>
Markup: [heading-1](#heading-1 "Goto heading-1")
Table, like this one :
First Header | Second Header |
---|---|
Content Cell | Content Cell |
Content Cell | Content Cell |
First Header | Second Header
------------- | -------------
Content Cell | Content Cell
Content Cell | Content Cell
Adding a pipe |
in a cell :
First Header | Second Header |
---|---|
Content Cell | Content Cell |
Content Cell | | |
First Header | Second Header
------------- | -------------
Content Cell | Content Cell
Content Cell | \|
Left, right and center aligned table
Left aligned Header | Right aligned Header | Center aligned Header |
---|---|---|
Content Cell | Content Cell | Content Cell |
Content Cell | Content Cell | Content Cell |
Left aligned Header | Right aligned Header | Center aligned Header
| :--- | ---: | :---:
Content Cell | Content Cell | Content Cell
Content Cell | Content Cell | Content Cell
code()
Markup : `code()`
var specificLanguage_code =
{
"data": {
"lookedUpPlatform": 1,
"query": "Kasabian+Test+Transmission",
"lookedUpItem": {
"name": "Test Transmission",
"artist": "Kasabian",
"album": "Kasabian",
"picture": null,
"link": "http://open.spotify.com/track/5jhJur5n4fasblLSCOcrTp"
}
}
}
Markup : ```javascript
```
- Bullet list
- Nested bullet
- Sub-nested bullet etc
- Nested bullet
- Bullet list item 2
Markup : * Bullet list
* Nested bullet
* Sub-nested bullet etc
* Bullet list item 2
-OR-
Markup : - Bullet list
- Nested bullet
- Sub-nested bullet etc
- Bullet list item 2
- A numbered list
- A nested numbered list
- Which is numbered
- Which is numbered
Markup : 1. A numbered list
1. A nested numbered list
2. Which is numbered
2. Which is numbered
- An uncompleted task
- A completed task
Markup : - [ ] An uncompleted task
- [x] A completed task
- An uncompleted task
- A subtask
Markup : - [ ] An uncompleted task
- [ ] A subtask
Blockquote
Nested blockquote
Markup : > Blockquote
>> Nested Blockquote
Horizontal line :
Markup : - - - -
Image with alt :
Foldable text:
Title 1
Content 1 Content 1 Content 1 Content 1 Content 1
Title 2
Content 2 Content 2 Content 2 Content 2 Content 2
Markup : <details>
<summary>Title 1</summary>
<p>Content 1 Content 1 Content 1 Content 1 Content 1</p>
</details>
<h3>HTML</h3>
<p> Some HTML code here </p>
Link to a specific part of the page:
Markup : [text goes here](#section_name)
section_title<a name="section_name"></a>
Hotkey:
⌘F
⇧⌘F
Markup : <kbd>⌘F</kbd>
Hotkey list:
Key | Symbol |
---|---|
Option | ⌥ |
Control | ⌃ |
Command | ⌘ |
Shift | ⇧ |
Caps Lock | ⇪ |
Tab | ⇥ |
Esc | ⎋ |
Power | ⌽ |
Return | ↩ |
Delete | ⌫ |
Up | ↑ |
Down | ↓ |
Left | ← |
Right | → |
Emoji:
:exclamation: Use emoji icons to enhance text. :+1: Look up emoji codes at emoji-cheat-sheet.com
Markup : Code appears between colons :EMOJICODE:
Videos
视频介绍
大气河是天空中巨大的水汽河流,每条河流的水量都比亚马逊河的还要多。它们一方面为美国西部提供了关键的降水来源,但另一方面,这些巨大的强风暴也会导致灾难性的洪灾和暴雪。NVIDIA 创建了 Physics-ML 模型,该模型可以模拟全球天气模式的动态变化,以超乎想象的速度和准确性预测大气河等极端天气事件。此 GPU 加速的 AI 数字孪生模型名为 FourCastNet,由傅里叶神经算子提供动力支持,基于 10 TB 的地球系统数据进行训练。依托这些数据,以及 NVIDIA Modulus 和 Omniverse,我们能够提前一周预测灾难性大气河的精确路线。在一个 NVIDIA GPU 的助力下,FourCastNet 只需几分之一秒即可完成预测
Images
H100 采用风冷和液冷设计,是首个实现性能扩展至 700 瓦的 GPU。在过去六年里,通过 Pascal、Volta、Ampere 和现在的 Hopper 架构,我们相继开发了使用 FP32、FP16和现在的 FP8 进行训练的技术。在 AI 处理方面,Hopper H100 FP8 的 4 PetaFLOPS 性能是 Ampere A100 FP16 的 6 倍,这是一次巨大的代际飞跃。
Transformer 无疑是最重要的深度学习模型。Hopper 引入了Transformer 引擎,Hopper Transformer 引擎将新的 Tensor Core 与能使用 FP8 和 FP16 数字格式的软件结合,动态处理 Transformer 网络的各个层,Transformer 模型训练时间可从数周缩短至数天。
在云计算方面,多租户基础架构能够直接转化为收益和服务成本。一项服务可将 H100 划分为多达 7 个实例,Ampere 也可实现此操作。但是,Hopper 新增了完整的每实例隔离和每实例 IO 虚拟化,便于支持云端的多租户。H100 能够托管七个云租户,而 A100 仅能托管一个。每个 H100 实例的性能相当于两个完整的 T4 GPU(我们非常热门的云推理 GPU)。
Real World | Digital Twin(Domain Randomization) |
---|---|
![]() |
![]() |
GIF:
MathJax
Inline
Equation aa: $-b \pm \sqrt{b^2 - 4ac} \over 2a$, b: $x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}}$, c: $\forall x \in X, \quad \exists y \leq \epsilon$
Block equation:
\[-b \pm \sqrt{b^2 - 4ac} \over 2a x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}} \forall x \in X, \quad \exists y \leq \epsilon\]